NORMAL *vs* CINE-SUBSTITUTION OF A NITRO GROUP IN 6,7-DINITROQUINOXALINE WITH PIPERIDINE

R. Nasielski-Hinkens, D. Pauwels and J. Nasielski Service de Chimie Organique, Faculté des Sciences, Université Libre de Bruxelles, Avenue F. Roosevelt, 50 B-1050 Bruxelles, Belgium.

(Received in UK 17 March 1978; accepted for publication 13 April 1978)

2,3-Dinitronaphthalene is known to give rise essentially to cine-substitution with alkoxides and amines $^{(1)}$. The extension of these reactions to 6,7dinitroguinoxaline (I) gave unexpected results which we report here.

Whereas I undergoes almost quantitative normal substitution with sodium methoxide to give 6-methoxy-7-nitroquinoxaline [m.p. 195-197°; NMR signals at δ (DMSOd₆) 9,04(d,1H), 8,95(d,1H), 8,64(s,1H), 7,82(s,1H), 4,32(s,3H)ppm], reactions with ammonia in ethanol or methanol lead to mixtures of 5-amino-7-nitro- and 6-amino-7-nitroquinoxalines in variable proportions. We felt that this variability deserved some attention and the influence of nucleophile concentration was investigated in the case of piperidine in ethanol. The isomeric nitro-piperidinoquinoxalines were identified by their NMR (CDCl₃) spectra ; II[m.p. 147-148°] had H₆ at 7,84 ppm (d) and H₈ at 8,48 ppm (d) with J_{6,8} = 2,5 Hz; III[m.p. 88-89°] showed H₅ at 8,31 ppm (s) and H₈ at 7,53 ppm (s).

The table summarizes the data for several runs where the nucleophile-tosubstrate molar ratio was always 10, but with various total concentrations. The cine/normal ratios where determined by integration of the relevant NMR peaks. The amount of cine-substitution steadily increases with rising concentration. Another fact worth noticing is the presence of 5-ethoxy-7-nitroquinoxaline [IV; m.p. 185-187°; H₆ at 7,85 ppm (d,1H) and H₈ at 8,75 ppm (d,1H) with $J_{6,8} = 2,5$ Hz] also a cine-substitution product, whose yield increases at higher dilution; the ratio III/IV is essentially concentration independent.

yield : 90 - 95%

Г-1 и л ⁻¹						0.007
[I] M.I -	0,13	0,07	0,057	0,029	0,015	0,007
[NHC ₅ H ₁₀] M.1 ⁻¹	1,30	0,70	0,57	0,29	0,15	0,07
II %	91	83	78,5	62	49	37,2
III %	4,3	8,7	11	20	28	31,1
IV %	5	8,3	10,5	18	23	31,6
II/III + IV	9,8	4,9	3,6	1,6	0,96	0,59
III/IV	0,86	1,05	1,05	1,1	1,2	0,98
Reaction of I	(0,66q, 3mr	nol) with r	piperidine	(3m1, 30 mm)	ol) in etha	nol
(20-400 ml) at	80°C. II a	and III are	e not inter	converted in	n these con	ditions.

These findings can be rationalized in terms of different rate equations for the three reactions. If one assumes, in analogy with what has been found for 2,3-dinitronaphtalene⁽¹⁾, that the cine-substitution by piperidine is second order in nucleophile, i.e.

$$v(\text{cine}) = k_{c} \left[I \right] \left[NHC_{5}H_{10} \right]^{2}, \qquad (1)$$

that the normal substitution is first order in amine, as is found in the case of o-dinitrobenzene $^{(2)}$, i.e.

$$v(\text{normal}) = k_n [I][\text{NHC}_5H_{10}], \qquad (2)$$

and that cine-ethoxylation requires one molecule of piperidine $v (ethoxy) = k_{EtO} [I][NHC_5H_{10}],$ (3)

one sees that (provided piperidine is in fair excess over substrate, which is the case here), [cine] / [normal]+[EtO] increases linearly with the concentration of nucleophile, whereas [normal]/[EtO] is concentration independent. Although the linearity suggested by equations (1) (2) and (3) is not strictly obeyed, we feel safe in assuming that the concentration of the amine plays a major role in determining the ratio of cine to normal substitution. It might be of interest to enquire whether other examples of cine-substitution reported in the literature show a similar concentration dependence.

Acknowledgement We thank Mr R. Polain for recording the 100 MHz (Jeol) NMR spectra and Dr M. Benedek-Vamos for elemental analyses.

Notes and References

All new compounds gave satisfactory analytical data
1) G. Guanti, S. Thea & C. Dell'Erba, Tetrah. Lett. 461 (1976).
2) F. Pietra & D. Vitali, J. Chem. Soc. Perk. II, 385 (1972).